106 research outputs found

    Transformation of dissolved organic matter in a constructed wetland: A molecular-level composition analysis using pyrolysis-gas chromatography mass spectrometry

    Get PDF
    This study investigated the transformation of dissolved organic matter (DOM) in a free-water surface flow constructed wetland. Pyrolysis gas chromatography-mass spectrometry (Py-GC/MS) coupled with preparative high-performance liquid chromatography (prep-HPLC) was used to analyze the compositions of biopolymers (polysaccharides, amino sugars, proteins, polyhydroxy aromatics, lipids and lignin) in DOM according to the molecular size at three sampling points of the water flow: inflow, midflow, and outflow. The prep-HPLC results verified the decomposition of DOM through the decrease in the number of peaks from three to one in the chromatograms of the sampling points. The Py-GC/MS results for the degradable peaks indicated that biopolymers relating to polysaccharides and proteins gradually biodegraded with the water flow. On the other hand, the recalcitrant organic fraction (the remaining peak) in the outflow showed a relatively high concentration of aromatic compounds. Therefore, the ecological processes in the constructed wetland caused DOM to become more aromatic and homogeneous. This indicated that the constructed wetland can be an effective buffer area for releasing biochemically stable DOM, which has less influence on biological water quality indicators, e.g., biochemical oxygen demand, into an aquatic ecosyste

    Robustness of the intrinsic anomalous Hall effect in Fe3GeTe2 to a uniaxial strain

    Full text link
    Fe3GeTe2 (FGT), a ferromagnetic van der Waals topological nodal line semimetal, has recently been studied. Using first-principles calculations and symmetry analysis, we investigate the effect of a uniaxial tensile strain on the nodal line and the resultant intrinsic anomalous Hall effect (AHE). Our results reveal their robustness to the in-plane strain. Moreover, the intrinsic AHE remains robust even for artificial adjustment of the atomic positions introduced to break the crystalline symmetries of FGT. When the spin-orbit coupling is absent, the nodal line degeneracy remains intact as long as the inversion symmetry or the two-fold screw symmetry is maintained, which reveal that the nodal line may emerge much more easily than previously predicted. This strong robustness is surprising and disagrees with the previous experimental report [Y. Wang et al., Adv. Mater. 32, 2004533 (2020)], which reports that a uniaxial strain of less than 1 % of the in-plane lattice constant can double the anomalous Hall resistance. This discrepancy implies that the present understanding of the AHE in FGT is incomplete. The possible origins of this discrepancy are discussed.Comment: 7 pages, 3 figure

    Detection of Absorbing Aerosol Using Single Near-UV Radiance Measurements from a Cloud and Aerosol Imager

    Get PDF
    The Ultra-Violet Aerosol Index (UVAI) is a practical parameter for detecting aerosols that absorb UV radiation, especially where other aerosol retrievals fail, such as over bright surfaces (e.g., deserts and clouds). However, typical UVAI retrieval requires at least two UV channels, while several satellite instruments, such as the Thermal And Near infrared Sensor for carbon Observation Cloud and Aerosol Imager (TANSO-CAI) instrument onboard a Greenhouse gases Observing SATellite (GOSAT), provide single channel UV radiances. In this study, a new UVAI retrieval method was developed which uses a single UV channel. A single channel aerosol index (SAI) is defined to measure the extent to which an absorbing aerosol state differs from its state with minimized absorption by aerosol. The SAI qualitatively represents absorbing aerosols by considering a 30-day minimum composite and the variability in aerosol absorption. This study examines the feasibility of detecting absorbing aerosols using a UV-constrained satellite, focusing on those which have a single UV channel. The Vector LInearized pseudo-spherical Discrete Ordinate Radiative Transfer (VLIDORT) was used to test the sensitivity of the SAI and UVAI to aerosol optical properties. The theoretical calculations showed that highly absorbing aerosols have a meaningful correlation with SAI. The retrieved SAI from OMI and operational OMI UVAI were also in good agreement when UVAI values were greater than 0.7 (the absorption criteria of UVAI). The retrieved SAI from the TANSO-CAI data was compared with operational OMI UVAI data, demonstrating a reasonable agreement and low rate of false detection for cases of absorbing aerosols in East Asia. The SAI retrieved from TANSO-CAI was in better agreement with OMI UVAI, particularly for the values greater than the absorbing threshold value of 0.7

    Neural Correlates of Transient Mal de Debarquement Syndrome: Activation of Prefrontal and Deactivation of Cerebellar Networks Correlate With Neuropsychological Assessment

    Get PDF
    Background: Mal de debarquement syndrome (MdDS) is characterized by a subjective perception of self-motion after exposure to passive motion, mostly after sea travel. A transient form of MdDS (t-MdDS) is common in healthy individuals without pathophysiological certainty. In the present cross-sectional study, the possible neuropsychiatric and functional neuroimaging changes in local fishermen with t-MdDS were evaluated. Methods: The present study included 28 fishermen from Buan County in South Korea; 15 (15/28, 53.6%) participants experienced t-MdDS for 1–6 h, and 13 were asymptomatic (13/28, 46.4%). Vestibular function tests were performed using video-oculography, the video head impulse test, and ocular and cervical vestibular-evoked myogenic potentials. Visuospatial function was also assessed by the Corsi block test. Brain imaging comprised structural MRI, resting-state functional MRI, and [18F]FDG PET scans. Results: The results of vestibular function tests did not differ between the fishermen with and those without t-MdDS. However, participants with t-MdDS showed better performance in visuospatial memory function than those without t-MdDS (6.40 vs. 5.31, p-value = 0.016) as determined by the Corsi block test. Structural brain MRIs were normal in both groups. [18F]FDG PET showed a relative hypermetabolism in the bilateral occipital and prefrontal cortices and hypometabolism in the vestibulocerebellum (nodulus and uvula) in participants with t-MdDS compared to those without t-MdDS. Resting-state functional connectivities were significantly decreased between the vestibular regions of the flocculus, superior temporal gyrus, and parietal operculum and the visual association areas of the middle occipital gyrus, fusiform gyrus, and cuneus in participants with t-MdDS. Analysis of functional connectivity of the significant regions in the PET scans revealed decreased connectivity between the prefrontal cortex and visual processing areas in the t-MdDS group. Conclusion: Increased visuospatial memory, altered metabolism in the prefrontal cortex, visual cognition cortices, and the vestibulocerebellum, and decreased functional connectivity between these two functional areas might indicate reductions in the integration of vestibular input and enhancement of visuospatial attention in subjects with t-MdDS. Current functional neuroimaging similarities from transient MdDS via chronic MdDS to functional dizziness and anxiety disorders suggest a shared mechanism of enhanced self-awareness as a kind of continuum or as overlap disorders

    GOCI Yonsei Aerosol Retrieval (YAER) algorithm and validation during the DRAGON-NE Asia 2012 campaign

    Get PDF
    The Geostationary Ocean Color Imager (GOCI) onboard the Communication, Ocean, and Meteorological Satellite (COMS) is the first multi-channel ocean color imager in geostationary orbit. Hourly GOCI top-of-atmosphere radiance has been available for the retrieval of aerosol optical properties over East Asia since March 2011. This study presents improvements made to the GOCI Yonsei Aerosol Retrieval (YAER) algorithm together with validation results during the Distributed Regional Aerosol Gridded Observation Networks - Northeast Asia 2012 campaign (DRAGON-NE Asia 2012 campaign). The evaluation during the spring season over East Asia is important because of high aerosol concentrations and diverse types of Asian dust and haze. Optical properties of aerosol are retrieved from the GOCI YAER algorithm including aerosol optical depth (AOD) at 550 nm, fine-mode fraction (FMF) at 550 nm, single-scattering albedo (SSA) at 440 nm, Angstrom exponent (AE) between 440 and 860 nm, and aerosol type. The aerosol models are created based on a global analysis of the Aerosol Robotic Networks (AERONET) inversion data, and covers a broad range of size distribution and absorptivity, including nonspherical dust properties. The Cox-Munk ocean bidirectional reflectance distribution function (BRDF) model is used over ocean, and an improved minimum reflectance technique is used over land. Because turbid water is persistent over the Yellow Sea, the land algorithm is used for such cases. The aerosol products are evaluated against AERONET observations and MODIS Collection 6 aerosol products retrieved from Dark Target (DT) and Deep Blue (DB) algorithms during the DRAGON-NE Asia 2012 campaign conducted from March to May 2012. Comparison of AOD from GOCI and AERONET resulted in a Pearson correlation coefficient of 0.881 and a linear regression equation with GOCI AOD = 1.083 x AERONET AOD -0.042. The correlation between GOCI and MODIS AODs is higher over ocean than land. GOCI AOD shows better agreement with MODIS DB than MODIS DT. The other GOCI YAER products (AE, FMF, and SSA) show lower correlation with AERONET than AOD, but still show some skills for qualitative use.open1

    Synergistic use of hyperspectral uv-visible omi and broadband meteorological imager modis data for a merged aerosol product

    Get PDF
    The retrieval of optimal aerosol datasets by the synergistic use of hyperspectral ultraviolet (UV)-visible and broadband meteorological imager (MI) techniques was investigated. The Aura Ozone Monitoring Instrument (OMI) Level 1B (L1B) was used as a proxy for hyperspectral UV-visible instrument data to which the Geostationary Environment Monitoring Spectrometer (GEMS) aerosol algorithm was applied. Moderate-Resolution Imaging Spectroradiometer (MODIS) L1B and dark target aerosol Level 2 (L2) data were used with a broadband MI to take advantage of the consistent time gap between the MODIS and the OMI. First, the use of cloud mask information from the MI infrared (IR) channel was tested for synergy. High-spatial-resolution and IR channels of the MI helped mask cirrus and sub-pixel cloud contamination of GEMS aerosol, as clearly seen in aerosol optical depth (AOD) validation with Aerosol Robotic Network (AERONET) data. Second, dust aerosols were distinguished in the GEMS aerosol-type classification algorithm by calculating the total dust confidence index (TDCI) from MODIS L1B IR channels. Statistical analysis indicates that the Probability of Correct Detection (POCD) between the forward and inversion aerosol dust models (DS) was increased from 72% to 94% by use of the TDCI for GEMS aerosol-type classification, and updated aerosol types were then applied to the GEMS algorithm. Use of the TDCI for DS type classification in the GEMS retrieval procedure gave improved single-scattering albedo (SSA) values for absorbing fine pollution particles (BC) and DS aerosols. Aerosol layer height (ALH) retrieved from GEMS was compared with Cloud-Aerosol Lidar with Orthogonal Polarization (CALIOP) data, which provides high-resolution vertical aerosol profile information. The CALIOP ALH was calculated from total attenuated backscatter data at 1064 nm, which is identical to the definition of GEMS ALH. Application of the TDCI value reduced the median bias of GEMS ALH data slightly. The GEMS ALH bias approximates zero, especially for GEMS AOD values of >similar to 0.4 and GEMS SSA values of <similar to 0.95. Finally, the AOD products from the GEMS algorithm and MI were used in aerosol merging with the maximum-likelihood estimation method, based on a weighting factor derived from the standard deviation of the original AOD products. With the advantage of the UV-visible channel in retrieving aerosol properties over bright surfaces, the combined AOD products demonstrated better spatial data availability than the original AOD products, with comparable accuracy. Furthermore, pixel-level error analysis of GEMS AOD data indicates improvement through MI synergy

    Current Trends in the Epidemiological and Pathological Characteristics of Gastrointestinal Stromal Tumors in Korea, 2003-2004

    Get PDF
    Despite remarkable progress in understanding and treating gastrointestinal stromal tumors (GISTs) during the past two decades, the pathological characteristics of GISTs have not been made clear yet. Furthermore, concrete diagnostic criteria of malignant GISTs are still uncertain. We collected pathology reports of 1,227 GISTs from 38 hospitals in Korea between 2003 and 2004 and evaluated the efficacy of the NIH and AFIP classification schemes as well as the prognostic factors among pathologic findings. The incidence of GISTs in Korea is about 1.6 to 2.2 patients per 100,000. Extra-gastrointestinal GISTs (10.1%) are more common in Korea than in Western countries. In univariate analysis, gender, age, tumor location, size, mitosis, tumor necrosis, vascular and mucosal invasions, histologic type, CD34 and s-100 protein expression, and classifications by the NIH and AFIP criteria were found to be significantly correlated with patient's survival. However, the primary tumor location, stage and classification of the AFIP criteria were prognostically significant in predicting patient's survival in multivariate analysis. The GIST classification based on original tumor location, size, and mitosis is more efficient than the NIH criteria in predicting patient's survival, but the mechanism still needs to be clarified through future studies

    New Era of Air Quality Monitoring from Space: Geostationary Environment Monitoring Spectrometer (GEMS)

    Get PDF
    GEMS will monitor air quality over Asia at unprecedented spatial and temporal resolution from GEO for the first time, providing column measurements of aerosol, ozone and their precursors (nitrogen dioxide, sulfur dioxide and formaldehyde). Geostationary Environment Monitoring Spectrometer (GEMS) is scheduled for launch in late 2019 - early 2020 to monitor Air Quality (AQ) at an unprecedented spatial and temporal resolution from a Geostationary Earth Orbit (GEO) for the first time. With the development of UV-visible spectrometers at sub-nm spectral resolution and sophisticated retrieval algorithms, estimates of the column amounts of atmospheric pollutants (O3, NO2, SO2, HCHO, CHOCHO and aerosols) can be obtained. To date, all the UV-visible satellite missions monitoring air quality have been in Low Earth orbit (LEO), allowing one to two observations per day. With UV-visible instruments on GEO platforms, the diurnal variations of these pollutants can now be determined. Details of the GEMS mission are presented, including instrumentation, scientific algorithms, predicted performance, and applications for air quality forecasts through data assimilation. GEMS will be onboard the GEO-KOMPSAT-2 satellite series, which also hosts the Advanced Meteorological Imager (AMI) and Geostationary Ocean Color Imager (GOCI)-2. These three instruments will provide synergistic science products to better understand air quality, meteorology, the long-range transport of air pollutants, emission source distributions, and chemical processes. Faster sampling rates at higher spatial resolution will increase the probability of finding cloud-free pixels, leading to more observations of aerosols and trace gases than is possible from LEO. GEMS will be joined by NASA's TEMPO and ESA's Sentinel-4 to form a GEO AQ satellite constellation in early 2020s, coordinated by the Committee on Earth Observation Satellites (CEOS)

    Creating a Culture of Prevention in Occupational Safety and Health Practice

    Get PDF
    The incidence of occupational injuries and diseases associated with industrialization has declined markedly following developments in science and technology, such as engineering controls, protective equipment, safer machinery and processes, and greater adherence to regulations and labor inspections. Although the introduction of health and safety management systems has further decreased the incidence of occupational injuries and diseases, these systems are not effective unless accompanied by a positive safety culture in the workplace. The characteristics of work in the 21st century have given rise to new issues related to workers' health, such as new types of work-related disorders, noncommunicable diseases, and inequality in the availability of occupational health services. Overcoming these new and emerging issues requires a culture of prevention at the national level. The present paper addresses: (1) how to change safety cultures in both theory and practice at the level of the workplace; and (2) the role of prevention culture at the national level
    corecore